A COMPARISON OF THE OSTEOLOGY OF THE dERBOAS AND .JUMPING MICE.

Br Marces W. Lyon Jro, Ain, Division of Mammal.

The forms considered in the present paper are those that hare usually been classed, especially recently, as a family of rodents under the name Diporlicte, as has been done by Mr. Thomas in his paper "On the Genera of Rodents." While there may be strong grounds for such a classification and for the association of the six genera, Sminthus. Zapus. ${ }^{1}$ Dimus, Aluctagu, Plutycercomys, and Euchorentes. of which the first two are each usually put in a separate subfamily, yet the limited material at hand is sufficient to show strong osteological attinities between Zupmes and Sminther which has not usually been recognized and which places them in contrast to the rest of the group.

The writer has had for comparison complete sketetons of Zapus and an Egyptian Dipus in the United States National Museum, two skeletons of different species of Alactagu in the American Museum of Natural History, kindly placed at his disposal by Dr. J. A. Allen, and several odd skulls of Zapus, Dipms, and Alactage, as well as the skin and skull of the type of Sminthus . Alerus in the National Museum.

Zapus and Dipus represent pronounced types. and for that reason. and because of the more complete material arailable, are compared at some length.

The vertebral column, with the exception of the cervical region, is essentially the same in each genns: the neck is short and weak; the dorsal vertebra (twelve) present no peculiarities; the lumbar vertebra (seren), especially the posterior ones, are built on a heary plan with largely developed neural and anteriorly directed transverse proc-

[^0]esses. Four vertebree form the sacrum, which is of the same form in each, and like that of the Muridu. The caudal series is much longer than all the preceding portions of the column taken together; Zupus has the greater number of rertehre-about thirty-sis (there is some rariation in different skeletons)-and the skeleton of Dipus shows twenty-cight.

The attas is a large ring, essentially the same in cach genus, but the second cervical or axis show considerable differences in the two genera.

In Krumes it is well developed and entirely free from the remaining five distinct vertebre behind, as well as from the axis in front.

In Z"tur atlas and axis are entirely free and articulate in the usual manner.

In Dipus the axis and the four succeeding vertebre are completely fused into one large compound "axis," with a large compound neural spine which shows no signs of segmentation. The fused centrum does show signs of segmentation, however.

In Dipus atlas and axis, free dorsally and laterally only, below they are fused into one piece.

The seventh cerrical is free from the rest of the series in each catse. The pectoral arch presents a few differences.

In Zapus the clavicle is longer, slenderer, and uniformly curred, convex outwardly.
Scapula with the vertebral border cursing into the anterior border, a shape usually seen in the Mfuridx. The supraspinous and infraspinous fosse are about equal in size.

In lhipus, clavicle stouter and heavier and somewhat in the shape of an italic f.

Scapula with au almost straight vertebral border, which does not slope gradnally into the anterior border. The supraspinons is much smaller than the infraspinous fossa.

The anterior limbs present no noticeable differences aside from relative proportions.

The fore limb of Zapus is about onehali the hind limb, or about three-quarters of the dorso-lumbar series of vertebree.

The fore limb of Dipus is about onequarter the hind limb, or about twothirds of the dorso-lumbar series of vertebree.

The pelvis shows no differences.
The hind limbs show marked differences, both as regards relative size and the number of elements in them. The ratio of the lengths of the different segments of the limbs to the total length of the leg is practically the same in each, but-

Zopus has shorter legs, the dorso-lumbar series of vertebre being about twothirds the length of the hind limb.

Dipus has longer legs, the dorso-lumbar series of vertebree being about one-third the total length of the limb.

The femur is similar in each, but Zatpus has a triangular projection (third trochanter) on the upper outer side, which, commonly found in the Murida, is lacking in Dipus.

The tibia is essentially the same in eath, though Digns hat a larger crest in front.

The fibula is slender, long and distinct above, as usial in the Myomorphes. but fuses firmly with the tibia below, a little above it- middle in Digns:and about as far below the middle in Zitpus.
The tarsus is composed of the same elements in eath genus, but is differently arranged in each, as--

Zapus has the anterior nonarticular part of the astragalne rather clongated, thus pusling the navicular forward, so that the outer side is in contact with the cuboid.
In Zapus the internal cuneiform is not much elongated and enls in an articular surface for the first metatar:al.

Dipus has the corresponding part of the astragalus shortened, so that the navienlar appears somewhat shut off from the, cuboid.

In Dipus the internal cuneiform is disproportionately long and lies close asainst theserond metatarsal, ending in a thinned extremity.

The metatarsal bones show striking differences.

In Zapus they are five in number, elongated and separate, the lateral ones being subequal, but decidedly shorter than the three central ones. Fach metatarsal bears a tigit.

All the digits have three phalanges except the innermost, which hears but two as usual.
The three middle digits have the relative proportions seen in Dipus, a slightly longer median one and two subequal lateral ones. The imnermest or first digit, hallux, reachesonly as faras the metatarsophalangeal articulation of the middle toes, and the first phalanx of the onter or fifth toe reaches the same point.

The skulls, as a whole, show very little resemblance to one another. points of community being found in the maxillo-zygomatic region only. The skulls of the Dipoulider (Dipus, Alactagu. Platyrencomys. Euchoreates, Sminthos, and $Z a \neq m s$) are characterized chiefly by the great development of the antorbital foramen, large and rounded and with a more or less separate camal for the transmission of the superior maxillary division of the trigeminal nerve. The malar consists of a more or less horizontal portion articulating with the stuamosal posteriorly and with the maxilla anteriorly. and a large more or less rertical portion, the anterior edge of which is in contact with the maxilla, the posterior edge free and forming the anterior boundary of the orbit, while the superior end of the rertical part is in contact with the lachrymal. But these common characters present several important differences in the two genera.

In Zapus the skull has a decided murine aspect, long and slender, with an unexpanded hrain-case, no mastoid bulle, and the zygoma sloping downward and backward from the maxilla.

In Dipus the skull has no murine aspect whaterer; it is broad and heary, much expanded behind, with the mastoid bones inflated as large as the true bulle and the outer border of the antorbital foramen standing out in wing-like projections and sloping downward and slightly forward.

The palatal and pterygoid regions are quite different in the two genera.

In Zopus the palate bones are much shortened posteriorly, the free edge concave and ending on a line with the last molar teeth. It shows exactly the same condition as is found in Mus.
The pterygoils have the usual forms and proportions seen in Mus.

In Zapus the external pterygoid plate assumes a more horizontal position and longitudinal direction, as in Mus.

Between the external plate (a process of the alisphenoid) and the intemal pterygoid plate (the true pterygoid bone) is a shallow fossa, entirely destitute of a floor and of the same form as is found in Mus.

In Dipus the palate is much more elongated and produced posteriorly to a considerable distance behind the last molars and ends in a blunted projecting spine.

The greater posterior length of the bony palate makes the pterygoids correspondingly shorter.

In Ihipus the external pterygoid plate is more vertical and more transversely placed.

Between the external and internal pterygoil plates is a deep and conspicuous fossa, rumning forward and being floored by the posterior lateral portions of the bony palate and laving for its roof the alisphenoid. It is a fossa on the order of that seen in Microtus.

The trmpanic bones are of similar form and position in each genus, triangular in outline and placed more tramsersely than longitudimally, asagainst the position in the Muride. They are each inflated to form bulle, which are-
smaller in Zopus, not approaching the median line, with the apices free from the basisphenoid. The inner erlges abut closely against the basioccipital, so that no vacuities are formed.

The mastoid portion of the periotic is not abnormally enlarged in Zupus, does not overcrowl any of the other bones, and has a form and position very similar to Mus.

The squamosal in Zapue is a thin and expanded bone, with its antero-posterior
larger in Dipus, nearer the median line, and the apex of each is definitely fused to the basisphenoid. Between their inner edges and the hasioccipital are large vacuities.

The mastoid portion of the periotic is greatly inflated in Dipus and presents almost as much surface on the posterior part of the skull as the tympanic bulla does on the ventral suriace. The two portions push inward to such an extent as to encroach upon the supraoceipital and render that bone correspondingly narrow. They swell out laterally and superiorly, so that a portion is seen above the tympanic and between a posterior process of the squamosal and the parietal and supraoccipital.

The squamosal in Dipus is a compact and much contracted bone, with its dorso-
diametergreater than its dorso-ventral, and is of the same type as is found in the Muridx.

The zygomatie process of the squamosal much expanded at its origin comes decidedy downward. This is in aceordance with its higher origin from the bone.
rentral diameter math greater than its antero-posterior. Its shape and position are elithoult to tescribe, and are hest seen in the tigure.

The zeromatic procese of the seftathosal comes out ahmost horizontally, sloping a little downwarl. This is in aceorlance with its lower origin from the bone.

The zygomatic region shows several differences. That of flifmes is apparently an extreme type. between which and Jhe. Zapmes seems to be somewhat intermediate. In Mus and other murines, both roots of the zygomatic process of the maxilla (ayying that there is an uper root above the antorbital foramen and a lower root below it) arise one directly above the other. This condition holds-
in Zapus, where the lower rout arises just in front of the premolar and the upper root about on a line directly abore. This condition canses the anterior part of the zygomatic arch to slope from above downward and backward.

Zupues has an almost triangular matar, which fits into the obtuse angle in the zygomatic process of the maxilla. The lower posterior angle of the malar is attenuated into a slender process going backward to the squamosal.

The antorbital foramen in Zapmes is more nearly elliptical, the major axis of the ellipee inclining outward from above downward.
but in Dipus the upper root comes off at a consillerable distance posterior to a point directly abose the lower root. This contition causes the anterior part of the \%rgomatie areh to slope downward and forward.

Dipus has a biratiate malar, the vertical part of which is much expanded laterally and fits into a right angle in the maxilla. The horizontal part is slenter and runs backward to meet the symamosal.

Theantorbital foramen in Dipus is more nearly orod, and the long axis inclines slightly inwarl from above downward.

At the lower inmer corner of this formen is a separate canal for the tramsmission of the second division of the fifth nerve, formed by a thin plate of bone arising from the lower root of the zegomatic process and abutting against the outer surface of the maxilla.

In Zapus the line of contact of this thin plate with the maxilla is always evilent, and very often the plate fails to meet the side of the maxilla.

The wall of the orbito-tempral fossa in Zapus shows a condition such as is found in Mus and the Muridit generally, with all the bones ossified and in close approximation to one another.

In Dipus this plate is completely anchylosed and the line of fusion obliterated.

In Itipus the wall of this fossa shows quite a deficiency in ossification. The optic foramina are musually large. Just behind the orbito-sphenoid is a large crescent-shaped vacuity bounded in front by the orbito-sphenoid and the orbital phate of the frontal; above and hehind, by the sfuamosal; ant below, by the allsphenoid.

The incisor teeth in both genera are short and curved backward after the mamer of the Muridu. Each tooth is traverwed by a groore
in its anterior face. Each genus has three upper molars on a side and as many below, with the cmamel thrown into folds, which are more complex in Zuy"us. Z"qums has a small mper premolar. but in the
 lacking in Dipus.

The lower jaw of Zupus is much deeper behind and has a well developed coronoid process almost equaling in size the condyloid process. The sigmoid notch is correspondingly leep and pronouncel.
Scarcely any prominence can be seen in Zatus correspomling to the covering of the root of the lower incisor.
The angle of the lower jaw in Zopus is deepenet, with the lower border turned inward, and is not periorated by a foramen.

The lower jaw of Itipus is shallow behind and with the cormmid process scarcely at all developed, with a corresponding diminution of the rigmoid nutch.
The (a] covering the root of the lower incisor forms a prominent projection beneath the condyloid process in mipus.
The angle of the lower jaw in Dipus is shallow and periorated by a large foramen.

Alactay" rery closely resembles Itipus and differs from Zarpus in essentially the same points that /hipmes does. Its chief differences from Dipus are the scarcely inflated mastoid bulle and the incomplete foramen for the nerve at the lower inner angle of the antorbital foramen. The vertical part of the malar is not so greatly expanded laterally and the audital bullie are less inflated. Alucterym has the "cammon" bone of Dipus, hut on either side of it is a small non-functional toe, consisting of a metatarsal and a digit. The cervieal vertebre show a tendency toward consolidation, but not that complete fusion found in Dipens.

In Alactugy the incisor:s are morooved and are not recurved as in Dijmis, but project more forward, presenting an appearance seen in the Hares. A small premolar is present. The molars have a more complex enamel pattern.

In nearly all these respects Dipus is seen to be a much more specialized trpe. Both Dipmes and Alectugue share nearly everything in common, atide from greater specialization, and are placed in strong contrast to Zapur.

Euchorentes ${ }^{1}$ is an animal with the foot structure of Alactage and a skull on the Dipms-Alactaye trpe, hat appearing more slender and with greatly enlarged bulte. In the structure of its zrgomatic arch. as well as in its marrower proportions, it approaches slightly the type of skull seen in Zapmes and Smintlus. "The zegona is very weak and thin, and the rertical portion, which separates the optic from the antorbital formen, is also very thin and slopes from above downward posteriorly (as in Zapus, Sminthes, and the Meriatere), while in Alucteyne the corresponding part of the zegoma is either vertical or anteriorly

[^1]directed. * * * There in. as in IVipus, a separate canal at the bate of the foramen for the exit of the nerve." ${ }^{1}$

The skull of sminthene rery closely approaches that of Zapmes, and it is hard to see how Alston, in his arrangement of the Rodents. could have considered it as an aberrant member of the family Jonidne and Zopus, Dipus, etri., as forming the Dipodide.

The structure of the zrgomatic arch and the shape of antorbital foramen is almost precisely the same as are these structures in Z an $1 / \mathrm{s}$. The latter has a slightly wider malar and the separate passage for the nerve is a little more marked. The palates are of the same style, but the posterion free edge has a median spine in simintlus. The only really striking differences are in the teeth. The upper incisors of Sminthes are plain, and the molans (there is also a small premolar) do not have the enamel in the same pattern, but raised up into cusp-like prominences arranged in pairs. While no skeleton is arailable, a careful examination of the skin reveals the fact that the hind feet are of similar form to those of Zinpux-at least with respect to freedom of metatarsals, number of digits and phalanges.

Pedretes has often been classed with the Dipodidre, but recently ${ }^{2}$ it has been shown to possess many hystricomorph attinities. and Thomas has placed it in that group of Rodents under the family Pedetide.

Dr. Cones, in Monographs of North Ameriean Rodentia, and Dr. (iill. in the Arrangement of the Families of Mammalia. put Zapm.s in a separate family from that of Dipue and Aluctey!u. It is inferred that Sininthex went to the Muridee. It would be in strict accordance with the facts, however, to associate Z apmes and siminthins in one group. following Winge, as the family Zaporlithe: and Dipus, Alactagu. Plutycercomy.s, and Euclurentes in an equivatent group as the family Dipuodidre.
The only pronounced common feature of the two families is the structure of the zygomatic arch and antorbital foramen. They all present the rare condition of a lachrymo-malar articulation. The arch has the most murine shape in Sminthux; Zupusis a shade further away: Euchorentes shows a condition further removed, but on a skull of otherwise Dipus structure: Aluctagn is much further removed, and Dipus still more so from the murine form.
The variations from a murine type of skull are entirely correlated with variations from a murine type of metatarsus. The $Z_{\text {olp }}$ misSminthus group with the mont generalized skull has the most generalized foot with the free metatarnals. We pass from generalization to specialization by both the foot and the skull and teeth from Alacterye to Dipues. Similar observations hold good in the case of the cervical vertebre.

[^2]In summing up, the old family Dipodidue is seen to be composed of two clearly defined though somewhat related families, of which Z"ipmis is trpical of the one and Dipus of the other. The antorbital foramen and its subdivision for the nere and lachrymo-malar articulation are the only striking points of similarity hetween the two familie. but otherwise the skulls are widely different and each homogencons in its. own family.

The Zapordide are at once recognized by the five separate metatarsals, free cervical vertebra, and general imurine aspect of the skull. It is composed of two easily separable subfamilies.

Zaporlinue, with the enamel of the molar teeth thrown into folds and the crowns presenting a generally smooth surface; upper incisors grooved; skull less murine; zygoma hearier and less oblique palate concave posteriorly. It contains the three genera, Zapus, Vaperozapus, and Eozupus.

Sminthince, with the enamel of the molar teeth in an entirely different pattern, and above folded in opposite loops so that there seems to be four cusp-like processes on each tooth; the upper incisors without grooves; and slenderer skull and zygoma. It contains the genus Siminthus and possibly the fossil genns Eomys, which is usually referred to this group.

The Dipodida are to be recognized by the fusion of the three middle metatarsats into a "camon" bone, longer hind limbs, a tendency toward consolidation of the cervical vertebra, as well as a totally different form of skull, much laterally expanded. It seems to be readily scparable into the three following groups, of which the first two should take subfamily rank, the Dipedine in contrast to the third group containing Euchorentes.

Diphse group with Dipus and its subgencra, hind foot with three digits; cervical vertebre anchylosed; mastoid considerably inflated: upper incisors grooved: no small premolar: antorbital camal for nerve complete.

Aluctege group, with Alectege and its subgenera, hind foot ivith more than three digits, but lateral ones much shortened: cervieal rertehrae not completely fused; mastoids not much inllated; upper incisors without groores; and a small premolar present above; antorbital canal for nerve not fully complete. Ilutycercomys withont the small premolar probably belongs to this group.

Enchorentince is at once told from the preceding by the posterior slope of the zygoma and more elongated skull and interorbital constriction; no root-cap for incisor on side of mandible; posterior palatine foramina very large: hind foot with five digits; upper incisors not grooved; upper premolar present.

BHBLIOGRAPIIV.

Most of the literature on this subject deals with the Jerboas and Jumping Mire from a systematie point of view, treating largely of the species. The following list, while it does not aim to cover all the references to the subject, yet contains most that has been written on the Jerboas and Jumping Miee as a whole, or on the larger groups of them:

Alstos, Enwrd R. On the Classification of the Grder Gilires. l'roe. Zool. Eoc. Lond., 1876, pp.61-98.
Bard, S. F. Mammals oi North America, 1859, pp. 428-4.32.
Blaws, J. II. Fauna der Wirbelthiere Dentschlanls, I, süngethiere, 15ñ, pp. 301$30 \overline{5}$.
Branit, J. F. Remarquessur la Chasification des Gerboives. Bull. Acad. St. Peterb., 1I, 1844, pp. 210-238.
Brandt, J. F. Untersuchungen über die craniologischen Entwickelungstuffen und die davon herzuleitenden Verwandtechaften und Classificationen der Nager. Mémoires de l'Acad. de St. Peterl., 6th Ser., Sci. Nat., VII, 1855, pl. 127-336.
C.art's, J. V., and Gerstaecker, C. E. A. Hanb. 'Zol., I, 1868, PIP. 100-101, 106.

Coles, Elhiott. Monographe of North American Rolentia. Report of U. S. Geol. Survey of Territories, N1, 1877, 14. 461-479.
Cuver, F. Mémoire sur les Gerboises et les Gerbilles. Trans. Zool. Ane. Lomd., LI, 1841, 1p. 131-148.
Desmarest, A. G. Mammalogie, 1822, pp. 31t-322.
Dobros, (G. E. On the Natural Position of the Family Itipodider. Proc. Zool. Soc. Lond., 1882, p1. 640-641.
Fischer, J. B. Synopsis Mammalium, 1829, pp. 333-33s.
Flower, W. H. Mammalia. Encych, Brit., 9th ed., pr. +18-420.
Flower, W. H., and Lydekrer, R. An Introduction to the Situdy of Mammals Living and Extinct, 1891, py. 479-480.
Giebel, C. (i. Zur Osteologie des lahradorischen Springers, Jaculus labradorius.

Gill, Tuendone. Arrangement of the Families of Mammalia. Smitheonian Miscellaneons Collections, $2: 30,1872, \mathrm{p} .20$.
Lichtenstens, II. Üher die Springmäuse. Abhand. Akad. Wissenseh., Berlin (1825), 1828, 1P. 133-161.
Lallebokf, W. Systematink Öfverigt of de gnagande Diggdjuren, Glikes, 1s66, 1p. $21,28-30$.
Mhame-Edwaris, H. and A. Reserches sur les Mammifères, 1868-1874, ip. 146-154.
Palmer, T. S. A List of the (ieneric and Family Names of Rodents. I'roc. Biol. soc. Wash., N1, 1897, pp. 241-270.
Parmess, F. G. On the Anatomy of the African Jmuping Hare (Pedetes caffer); compared with that of the Dipentide. Proc. Zool. Soc. Loml., 18:ss, pre. $8.58-890$.
Pocsshrgces, E. de. Bull. Mus. d'list. Nat., 1896, p. 11.
Preble, E. A. Revision of the Jumping Mice of the Genus Zapms. North American Famna, No. 15, 1899.
Schenser, M. Paleontographica NXXI, 1884, p. 85.
Schreper, J. (. I. von. Die Singthiere, 1792, pp. 839-861.
Sclater, W. L. On a new (ienus and Species of Rodents of the Fanily Dipodide from Central Asia. Proc. Zool. Soc. Lomd., 1890, 1P). 610-613.
Thomis, Oldfield. On the Genera of Rodents. Proc. Zool. Soc. Lond., 1s96, p. 1023.

Trocessint, E.-L. C'atalogus Mammalium, 1897, pp. 589-596.
Tullberg, Tycho. Ueber 1 las System der Nagethiere, 1899, 111. 181-195.
WagNer, J. A. Gruppirung der Gattungen der Nager in natürlicher Familien. Irchiv für Naturgeschichte, Berlin, 1841, p. 111.
Wifiner, J. A. Schrebers Singthiere. Fortgesetzt von J. A. Wagner, III, 1843, p1. 274-295.
Wateniouse, G. R. Observations on the Rodentia. Magazine of Natural History, III, 1839, p1. 60-91, 186-188.
Winge, Herluf. Jordiundne og nulevende Gnavere (Rodentia) fra Lagoa Santa, Minas Geras, Brasilien. E. Mus. Lumdii, III, 1887 (85), pp. 118-120.
Zittel, K. A. Mamlbuch der Paleontologie. Part I, JV, 189:3, 111. 526-5:2..

ENPLAN゙ATION OF PLATES.

All figures one and a half times natural size. The letters on the plates hare the following significance:

Sq, squamosal.
m, mastoid.
So, supraoceipital.
C, calcanemm or os calcis.
A, astragahus.

N, navicular.
Cri, cuboid.
Ec, Mc, and $I c$, external, middle, and internal cuneiform.

Plate NXV.

Fig. 1, lateral view of skull of Zapus.
2, lateral view of skull of Euchoreutes, redrawn t o seale from Sclater's figures in Proc. Zool. Soc. Lond., 1590, 1. 611. Compare with Zapus and siminthers and note similarity of the zygomata.
:3, lateral view of skull of Sminthus.
4, lateral view of skull of I ipus.
5 , lateral view of skull of Alactagu.
Plate Niviv.
Fig. 1, rentral view of skull of Zapus.
2, ventral view of skull of Euchoreutes, redrawn to scale from Sclater's figures in Proc. Zool. Soc. Lond., 1890, 1. 611. Note the similarity of the rentral view with the same aspects of Dipus and Alactagu.
3, rentral view of skull of Siminthus.
4 , ventral view of skull of Dipus.
5. rentral view of skull of Alactagu.

Plate NXVII.

Fig. 1, left hind foot of Zapus, dorsal view and internal lateral riew of the tarsal bones.
2, left hind foot of Ilactagu, dorsal view and internal lateral view of the farsal bones. The pre-tarsal part is drawn from a specimen in the American Inseum of Natural History; the tarsal bones are filled in from a dissected tarsus taken from a skin in the U. S. National Inseum.
3, left hind font of Dipus, dorsal view and internal lateral view of the tareal bones. Rudiment of the fifth metatarsal may be seen.

[^0]: ${ }^{1}$ This genus has been separated into three subgenera by Mr. Ireble, North American Fana No. 15, and recently Mr. Gerrit S. Miller, jr., Preliminary List of New York Mammals, Bulletin New York State Museum, VT, 1899, pp. 275, 830-331, has raised the subgenus Tapacozapus to generic rank. It differs from true Zapus only in the absence of the minute upper premolars. Donbtless in time nany of the subgenera in the other genera will be thus raised to generic rank.

[^1]: ${ }^{1}$ From the description and figures, sclater, I'roc. Zool. soe., London, 1890, pp. 610-613.

[^2]: ${ }^{1}$ Sclater, Proc. Zool. Soc., 1840, Pu. 610-613.
 ${ }^{2}$ Thomas, Proc. Zool. Soc., 1896, pp. 1012-1028, and Parsons, Proc. Zool. Soc., 1895, pp. 85S-890.

